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1. Introduction 

The need for higher efficiency, performance, and adaptability in systems is increasingly driving 

the trend towards replacing functions traditionally implemented with purely physical design (for 

ex. suspension), with a software-controlled design that uses a combination of physical actuators, 

sensors, and sophisticated control strategies implemented with software. The industry and 

research literature is replete with examples and statistics of the increasing role of software in 

such systems (e.g., number of processors and software lines of code in a modern automobile). 

Indeed, the coinage of the term Cyber Physical Systems is a recognition of this trend, and a 

recognition of a host of challenges concomitant with the tight coupling between computational 

and physical processes.  

 

Towards the broader goals of AVM (stated earlier), this trend entails that, a) Software is 

increasingly a system complexity and schedule driver, and b) Correctness-by-construction is 

intrinsically coupled with the behavioral correctness of the software and timing correctness of 

the implementation on a computational platform.  

 

The software design and implementation tools, integrated into the OpenMETA tools, were driven 

by the implications above, and designed to fulfill the following requirements: 

1. Reduction in Software Complexity  

a. Provide higher-abstraction formalisms for modeling software and computational 

platforms 

b. Provide automated tools for behavioral and platform code synthesis 

2. Correctness by construction 

a. Provide automated tools for co-simulation of software and physical dynamics 

b. Provide automated tools for verification of hybrid state-space formed by software 

and physical 

 

In fulfilling these requirements, we had to be cognizant of the broader industry and research 

community trends in terms of tools, methodologies, practices, and tangible assets. Software 

design in industry (especially embedded and controller software design) is increasingly shifting 

towards commercial model-based tools such as Simulink/Stateflow by Mathworks, Rhapsody, 

etc., and there is a growing community of practitioners and engineers using these tools as well a 

large asset base of models and toolboxes created within this tools. In keeping with our model 

integration approach articulated earlier, we chose a Simulink and Stateflow-like abstraction as 

our primary formalism for representation of software components. Our prior work [1] in this area 

has already developed some of the tools necessary for integrating with Simulink and Stateflow 

that is leveraged in the OpenMETA tools. 

 

The purpose of this chapter is to introduce the software design, implementation, and verification 

tools of the OpenMETA toolchain.  The rest of this chapter is organized as follows: section 1 

introduces the conceptual workflow for (controller) software design, implementation, and 

verification as a sequence of activities; section 2 introduces the tool architecture including the 
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tools used and the interfaces as well as information flows between the tools; section 3 provides a 

description of the modeling languages used in the cyber tools; section 4 provides a description of 

the code generators (developed in OpenMETA or extended from prior work);   

 

2. Conceptual Software Design Flow 

 

 
Figure 1: Software Controller Design and Synthesis Workflow 

 

The conceptual design flow for software controller design and synthesis is depicted in Figure 1. 

The depicted design flow is a refinement of the overall META design flow (described in Chapter 

2 – design flow evaluation), for software components. Software components together with 

sensors and actuators are responsible for realizing physical dynamics that couple with the rest of 

the physical components and subsystems, which in OpenMETA is described with Modelica. The 

logical software design flow progresses as follows: 

1. Linear Differential Equations/Bond Graph Models: The logical software design flow 

begins with the causalization of the physical dynamics, identifying the input (sensed) and 

output (actuated) variables. Causalization of dynamics is required as the physical 

dynamics of the system described with Modelica are typically acausal. The continuous 

physical dynamics are then approximated with discrete dynamics along with selecting 

sampling rates for the individual blocks in the controller subsystem. These activities are 

typically performed in tools like Simulink and Stateflow, which results in a functional 

block architecture of the controller. 

2. Software Architecture Synthesis: This functional architecture is then further refined and 

partitioned into a set of software components and a software component architecture. 

This activity is performed in the ESMoL modeling suite (described later).  
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3. Software Code Synthesis: The software components, which are defined with Simulink 

and Stateflow models, are translated into code using code synthesis tools, either 

commercial such as Targetlink or Realtime Workshop, or code generators such as 

Stateflow-to-C and Simulink-to-C provided with the ESMoL toolsuite.  

4. Component Code WCET Analysis: These generated codes are subjected to timing analysis 

to estimate the worst case execution time (WCET),  

5. Component Code Model Checking: Generated component codes are model checked, 

using Stateflow model checker as well as CBMC - a C-code model checker. The result is 

an instrumented and individually verified code for software components.  

6. System Platform Model: In parallel, a computational platform model is defined that 

includes processors, communication buses, and networks.  

7. Software Component Architecture Timing Model: The software component architecture 

model, annotated with timing regarding the worst-case execution times of software 

component code, as well as the periodicity of execution based on the sampling rates leads 

towards the system architecture model.  

8. System Architecture Synthesis: In the system architecture model, software components 

are deployed on the platform model and communication between components is mapped 

to messages on buses.  

9. Scheduling and Schedulability Analysis: The resultant model is then subjected to 

schedulability analysis and schedule synthesis (using scheduling tools provided with 

ESMoL).  

10. System Integration Code Synthesis: The fully resolved system architecture model with 

schedule information is then processed with system integration code generators that 

produce code for configuration and integration of software components with operating 

system tasks, as well as configuration of operating system and platform services for 

scheduling and dispatch of bus messages.  

11. Hybrid Dynamics Model Synthesis: Finally, the software code and platform that represent 

a discretized implementation of physical dynamics is re-integrated with the physical 

dynamics of the rest of the system, and subject to hybrid systems verification (using tools 

such as HybridSAL). The verification can check for functional correctness of the 

combined cyber-physical system, against properties specified with temporal logic. 
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3. Cyber Design Tool Architecture 

3.1. Software Design and Implementation Toolchain 
Figure 2 depicts the architecture of the software design toolchain for behavioral and platform 

code synthesis.  The tool architecture can be best explained by partitioning into the following 

core set of activities: 1) Cyber (Component) Behavior Modeling, 2) System Design Space 

Authoring (Modeling), 3) Cyber Platform Modeling, and 4) Software Manufacturing (Code 

Generation).  

 

 
Figure 2: Software Design Tool Architecture for Platform Code Synthesis 

Cyber (Component) Behavior Modeling: is performed primarily with Simulink/Stateflow and 

additionally with the Cyber Modeling Language (inherited from the ESMoL toolsuite). The 

Cyber Modeling Language (described later) contains constructs equivalent to Simulink 

Stateflow’s integrated dataflow and state machine formalisms, and supports automated import 

from Simulink/Stateflow models. The Simulink/Stateflow models constitute the core behavioral 

representation of the controller, however, are agnostic in terms of their software 

componentization and deployment on a software component framework. Software 

componentization refers to the packaging of software functions into components, with timed 

execution threads, and life-cycle management. There is a variety of component frameworks, 

ranging from complex and comprehensive such as AutoSAR, to emerging ones such as FACE 
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(defined for Naval Avionics). ESMoL’s Cyber Modeling Language, in addition to the 

dataflow/stateflow behavior formalisms, includes a simple component model that equates a 

software component to a Real-Time Operating System (RTOS) process, triggered by periodic 

timed or event-driven alarms, and executes one or more software function associated with the 

alarm triggers. Thus, after importing controller behavior models from Simulink/Stateflow, 

engineers partition Simulink/Stateflow behavior models into a set of Software Components. The 

outcome of the Cyber Behavior Modeling is a collection of Software Components with 

appropriate causal (input/output) interfaces. These Software components can be packaged as an 

AVM Component Model, with an ACM descriptor, and are ready to be used in CyPhy for 

System Design.  

 

System Design Space Authoring (Modeling):  is performed in the main CyPhy environment. In 

this environment, software components are interfaced with physical components or other 

software components using CyPhy’s design and design space representation modeling 

constructs. The architectural approach from the system design to manufacturing is through Test 

Benches. A physical manufacturing Test Bench defines an interface to the manufacturing 

foundry (iFAB) and generates artifacts necessary for iFAB to conduct build activities. 

Conceptually similar, a software manufacturing Test Bench defines an interface to the Cyber 

Platform Modeling and Code Generation tools (described below), that trigger the software build 

activities. The outcome of the System Design Space tools and Test Benches is an AVM Design 

Model, with an ADM descriptor, that defines the system design, the components used in the 

design, and their interactions. 

 

Cyber Platform Modeling: is performed in the ESMoL modeling suite. The Platform Modeling 

Language of ESMoL is used to define the processors, buses, and network topology. The 

processors and buses are modeled for their core performance characteristics (CPU speed, Bus 

data rate, etc.) and resource limits (Static/Dynamic Memory size, Stack size, Message packet 

size, etc.). The Software components are imported from the Cyber Behavior and System Design 

models. The software components are mapped to RTOS processes (tasks), associated with time 

and event-triggered alarms, on different processors in the platform model. The interactions 

between software components for non-collocated components are mapped over to bus messages 

associated with appropriate communication bus in the network. The outcome of these tools is an 

integrated platform architecture model that can be used by Code Generation tools. 

 

Software Manufacturing (Code Generation): is performed by three distinct types of code 

generators: a) behavioral code generation, b) schedule code generation, c) OSEK platform code 

generation.  

The behavioral code generation produces C code files from the Simulink and Stateflow models 

representing the controller behavior. There are two separate code generators included in the 

ESMoL toolsuite that accomplish this task. A formally described (using graph-rewriting 

transformations) model transformer maps Stateflow models into a formalizable subset of the C 

language. The model transformation conforms to the (informally described) operational 

semantics of Stateflow as documented by Mathworks. Another formally described code 

generator maps Simulink models to a subset of the C language. This transformation flattens a 

hierarchical dataflow diagram (Simulink formalism), and performs a topological sort of the 
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objects in the dataflow. The topologically sorted graph is processed with model template 

processors that emit code for different Simulink native block types (such as differentiators, 

integrators, adder, multiplier, etc.). The output of the two behavioral code generator is an 

integrated top-level initialization function that initializes the internal state variables and data 

structures, as well as a top-level step function that can be called for each invocation (time-driven 

or event-driven) of the model defined behavior. 

The schedule code generation produces an input specification for a scheduling tool, and 

subsequently translates the derived schedule as an input to the subsequent platform code 

generator. The input specification for the scheduling tool consists of a list of tasks (processes) for 

each processor, their worst-case execution time (WCET), and their periodicity. A sporadic server 

approach is assumed for aperiodic tasks for deriving the schedule i.e. a virtual sporadic server 

task is included with heuristically defined period as well as WCET. The scheduling tool casts the 

scheduling problem as a constraint satisfaction problem, and uses a finite-domain constraint 

solver to derive a satisfying schedule. The output of the scheduling tool is the input specification 

file augmented with a major period for each processor as well as offset of each task into the 

major period. 

The OSEK platform code generation produces a set of configuration files that are used by the 

platform tools for deploying and executing the operational software. These files include an OIL 

(OSEK implementation language) file and CAN bus configuration file. The OIL file contains 

specification for tasks, the main entry point for the task, and a set of alarms triggering the task. 

The CAN bus configuration file contains the bus messages and the size and timing of the bus 

messages.  

The generated code and configuration files are processed by compiler and platform tools to 

generate binary object files that can be loaded into the platform processors for operation of the 

cyber physical system.    
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Figure 3: Software Design Tool Architecture for Hybrid System Simulation and Verification 

3.2. Hybrid Simulation and Verification Toolchain 
Figure 3 depicts the architecture of the software design toolchain for hybrid simulation and 

verification. The tool architecture can be best explained by partitioning into the following core 

set of activities: 1) Cyber (Component) Behavior Modeling, 2) System Design Space Authoring 

(Modeling), 3) Physical Components Authoring (Modeling), and 4) Hybrid System Evaluation 

(Simulation and Verification). The Cyber Behavior Modeling, and System Design Space 

Modeling capabilities and roles are similar to the software design and implementation tool 

architecture explained above.  

 

Physical Components Authoring: is performed in CyPhy and component authoring tools 

developed in C2M2L and related projects. The physical components dynamics modeling is 

performed using Modelica language. The outcome of these tools are a set of AVM component 

models, associated with an ACM descriptor, that are made available to System Design Space 

Modelers for creating system design. 

 

Hybrid Systems Evaluation (Simulation and Verification): involves two distinct flows with 

shared design artifacts.  

Hybrid Simulation Flow - The CyPhy Dynamics model composer, generates a Modelica model 

for the System under Test specified through the Dynamics Test Bench. As part of the 

composition process, when the composer visits a Cyber component, it triggers the invocation of 

the Cyber behavior code generator (described earlier). This code generator produces the behavior 

code of the Cyber component (initialization, and step function code). The dynamics composer 

generates a Modelica wrapper for these cyber components, using a Modelica language 



8 

functionality to allow inclusion of external “C” code functions. The resultant Modelica model is 

processed with Modelica compiler and simulation tools that generate a hybrid simulation of 

composed physical and cyber system. The results of simulation tools are processed similar to 

other simulation outputs, and used to extract metrics that are evaluated against requirements  

Hybrid Verification Flow - The output of the CyPhy Dynamics composer, Modelica model is 

processed using the Modelica compiler to generate a Differential Algebraic Expression (DAE), 

XML representation of the Modelica model. The DAE-XML along with the Cyber behavior 

model (from ESMoL) is provided directly to a translator that generates a HybridSAL 

representation of the hybrid dynamics of the cyber-physical system. HybridSAL checks the 

model against a set of verification conditions, which are specified using CTL/LTL formulae, and 

can check the model for conformance, or find a counterexample in case the model does not 

conform to the specified verification criteria.  
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4. Modeling Languages 

The Cyber Design Toolchain consists of multiple modeling suites and languages. In this section 

we will provide an overview of these languages which are integrated into the ESMoL modeling 

suite.  

 

The ESMoL is a graphical design modeling language suite which consists of the following 

languages: (1) dataflow-diagram oriented modeling of signal flows, (2) hierarchical state 

machine diagrams to model finite-state behavior, (3) software component modeling, (4) 

hardware topology modeling, and (5) deployment modeling. The first three languages relate to 

Cyber Behavior Modeling, while the last two relate to Cyber Platform Modeling. These 

languages are described below in terms of meta-models that capture the abstract syntax of the 

language.   

 

4.1. Behavior Modeling with Dataflow Diagrams 
The Simulink portion of the meta-model supports the dataflow-oriented modeling of dynamical 

systems. The following description elaborates upon the depiction in Figure 4. The top-level 

container for Simulink models is the Simulink folder. Note that a folder does not have any 

composition semantics; it is simply a container for organizing models. As such the top-level 

container of Simulink models with a well-defined composition semantics is really a System 

which is a <<Model>> (in the GME terminology) contained in the Simulink folder. Systems are 

hierarchical as can be observed from the containment relation between the System class, and the 

Block class which is an abstract generalization of the System class. Systems are semantically 

equivalent to the SL concept of SubSystems, and the composition semantics are that of the 

dataflow model of computation [5]. Thus, a System class defines a dataflow relation between the 

contained Blocks (which may be Systems, Primitives, or References), using the Line association 

class, that associates Ports of Blocks. Note that Blocks, Ports and Connectors are abstract base 

types (i.e. they cannot be instantiated, thus there are no model elements directly corresponding to 

them). Blocks are subclassed into Systems, References, and Primitives. The Reference class (not 

to be confused with the <<Reference>> concept and stereotype of GME) represents an imported 

block (a library block in SL/SF), while a Primitive is a basic block, that has a concrete 

implementation, and it exists in the local context. Blocks also contain Parameters and 

Annotations. Parameters define configurable properties of a block, for example, the Gain 

parameter of the Gain primitive, allows configuration of the gain factor with which the block 

amplifies the input. Annotations are documentation concept that allows a developer to annotate 

and insert textual comments in an essentially graphical specification. Annotations do not have 

any operational semantics. Ports are subclassed into EnablePorts, TriggerPorts, InputPorts, and 

OutputPorts, each of which corresponds to equivalent modeling concepts in SL/SF and has the 

same semantics. Connectors are sub-classed into Ports and BranchPoints. The Connector 

abstraction is simply a meta-modeling convenience, which allows abstracting all entities that can 

participate in a dataflow association, specified with the Line association class. Notice that the 

association class Line is stereotyped as a <<Connection>> and implies a specific visualization as 

connecting lines in GME. Thus, Lines denote dataflows among Blocks within a System (via their 

Ports and intermediate BranchPoints). 
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Figure 4: ESMoL Dataflow Language (Simulink Equivalent) 

 

4.2. Behavior Modeling with Stateflow Diagrams 
The Stateflow portion of the meta-model supports the statechart-style modeling of hierarchical 

finite state machines. The Stateflow folder contains State <<Model>>s, which are root models 

for hierarchical state machines, and is equivalent to the State concept in SF. Each State can 

contain a number of Data, and Event objects – each of which has the same semantics as the 

equivalent concepts in SF, and subclasses of the (abstract) TransConnector (as in “transition” 

connector) class. The subclasses of TransConnector include Junctions, TransInPorts, 

TransOutPorts, TransStart (as in “transition” input and output ports and starting points), History, 

and ConnectorRefs (which are <<Reference>>s pointing to objects derived from the 

TransConnector base class).  States contain Transition <<Connection>>s. These connections 

connect two objects (derived from the TransConnector class), and represent the state transition 

concepts of the hierarchical finite state machine. The operational semantics of transition is the 

same as those of transitions in SF; however, the graphical representation differs. In SF, 

transitions are visualized as a line between the participating states. In ESMoL however, a 

transition is between TransOutPort and TransInPort of the participating states. A second 

distinction exists in the graphical representation of cross-hierarchy transitions. SF allows 

connections cutting across hierarchy, since the SF visualization of hierarchical finite state 

machines is a flattened diagram. In GME however, this is not feasible since there are no 

graphical means of depicting connections between objects that are not contained in the same 
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parent. Therefore, ESMoL relies on the use of references, which are effectively pointers to 

objects that exist elsewhere. A State model also contains a BlockRef <<Reference>>, which 

points to a Block (contained in a System, described above). This mechanism provides the linkage 

between a Stateflow model and a Simulink model. Within the Simulink hierarchy a state 

machine is represented as a System that has Ports. These Ports have the same name as the input 

and output Data variables in the state machine model. This System object contains a Primitive S-

Function Block, which is referred in the State, thus denoting the correspondence.  See Figure 5 

for a view of the ESMoL hierarchical state machine language. 

 

 
Figure 5: ESMoL Hierarchical State Machine Language (Stateflow Equivalent) 

 

4.3. Software Component Modeling 
ESMoL components encapsulate SL/SF Systems (blocks), support the definition of ports (and 

their association with the ports of the encapsulated System), specification of signal properties 

and real-time constraints. The execution time semantics of an ESMoL Component is the same as 

that of the encapsulated System model. Figure 6 shows the Component modeling portion of the 

ESMoL modeling language. An elaboration of the meta-model follows: 

● ComponentModels<<Folder>> is a container for the ComponentSheet<<Model>>-s. A 

GME Folder is exclusively an organizational concept and has no composition semantics. 
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A designer can create one or more ComponentModels folders in a Root Folder (not 

shown on the meta-model), which is the unique root container in a GME project.  

● A ComponentSheet<<Model>> is a container for Component<<Model>>-s, as well as 

for component interactions which are modeled with Signal<<Connection>>-s. A designer 

can create Component models within a ComponentSheet, and model their interactions by 

creating Signal connections between Component ports. For reasons of scalability, and 

avoiding visual clutter, ESMoL allows a designer to create multiple ComponentSheet 

models and distribute Components over these. When there is a need to model an 

interaction between Components that are not located on the same ComponentSheet, a 

designer must create a ComponentShortcut<<Reference>> in the ComponentSheet where 

he wants to make the connection. 

● A Component<<Model>> represents software components. In GME, every modeling 

object has a name. GME does not impose any restrictions on the naming. However, C 

code-generation requires that component names form a valid C identifier. The CName 

attribute has been introduced to overcome this restriction. This allows the designer to use 

a descriptive free-form name for a component, which is displayed in the models, and 

provide a separate valid C-identifier name in the CName attribute. Components contain 

SystemRef<<Reference>>, which is a reference to a System<<Model>> (see ESMoL: 

Simulink portion). Notice, the cardinality of the SystemRef containment which is set to 

0...1. This prevents the user from creating more than one System references within a 

component. Note however, that this allows creating Component-s that have no System 

references. In a distributed automotive application, there are situations when Component-

s relying on certain Sensor inputs (or generating Actuator outputs) are deployed on an 

ECU remote from the ECU that is connected directly to the specific Sensor. In such 

situations forwarder components are required that can forward the Sensor data. In 

ESMoL Component-s that have no Simulink System references, are considered forwarder 

components. 

● A CPort<<Atom>>-s, is an abstract class, concretized as CInPort<<Atom>>-s and 

COutPort<<Atom>>-s. These represent component ports and define the input and output 

interface of a component. The CName attributes of CPort defines a symbolic name for 

the port that is used in code-generation (similar to the CName attribute of Component). 

The DataType attribute is an enumeration of data-types of the signal (Integer, Single, 

Double), and the DataSign attribute specifies if the data-type is signed or unsigned. The 

DataSize specifies the size of the data-type representation as number of bits. The DataInit 

attribute specifies the initial value of the signal associated with the port. The DataOffset 

and the DataScale attribute specifies the offset and scaling when converting from the 

Simulink signal data-type to the concrete data-type specified on component port. The 

Max and Min attribute specify the upper and lower bound on the values that the physical 

signal associated with the port can take. 
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● A Signal<<Connection>> is an association class that represents connections between 

component ports. The connections originate from COutPort and terminate in CInPort. 

● InPortMapping<<Connection>> and OutPortMapping<<Connection>> are association 

classes that represent mapping of Simulink System ports to component ports. 

● An RTConstraint<<Atom>> allows capturing real-time constraints over component ports. 

The Latency attribute specifies the desired real-time constraint, over when an input is 

received on an associated CInPort (associated via RTCIn<<Connection>>), and when the 

output is generated on the corresponding COutPort (associated via 

RTCOut<<Connection>>). 

 

 
Figure 6: ESMoL Component Modeling 

 

4.4. Hardware Platform Modeling 
The hardware modeling sublanguage of ESMoL allows the designer to specify the hardware 

topology, including the processors and communication links between the processors. These 

models introduce new model types: ECUs (which are processors hosting the components), 

busses (that establish the communication links between the processors, and thus the software 

components).The details of these models are as follows. ECU models represent specific 

processors in the system. An ECU is equipped with hardware I/O channels and bus connections, 

and has a number of other attributes. ECU-s are represented as <<Model>>-s in GME, which are 

ported objects. An ECU model has two kinds of ports (for representing the I/O channels and the 

bus connections), and (textual) attributes capturing all the other attributes. The specifics of the 

firmware are captured here as attributes. I/O channel ports come in two variants: sensor ports and 

actuator ports. As these are separate design objects within the ECU model, they have their own 
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attributes that capture other, relevant properties (e.g. firmware element associated with a sensor). 

Bus models represent communication pathways used to connect ECUs. Busses are expressed as 

GME <<Atom>>-s and their attributes specify various properties of the physical communication 

system (e.g. bit rates). Busses connect two or more ECU-s through their bus channels (which are 

the bus-related connection ports of the ECU-s). Figure 7 shows the Hardware Modeling portion 

of the ESMoL meta-model: 

▪ HardwareModels<<Folder>> is a container for HardwareSheet<<Model>>-s. A designer can 

create one or more HardwareModels folders in a Root Folder. 

▪ A HardwareSheet<<Model>> represents the hardware topology that is composed with ECU-

s, Bus-is, and connections between those. It contains Wheelmen<<FCO>> which is an 

abstract class, concretized as ECU<<Model>>, Bus<<Atom>>, and Bus 

Connector<<Connection>>.  

▪ An ECU<<Model>> represents a physical ECU. The CName attribute of an ECU is similar 

to CName attribute detailed earlier for Component-s and CPort-s. The CPU attribute 

specifies the processor family, the RAM and ROM attributes specify the available memory 

on the CPU, while the Speed attribute specifies the processor speed. The Simulator attribute 

specifies the name of the simulator used for simulating the ECU. 

▪ A Bus<<Atom>> represents a physical communication bus. The Bitrate attribute defines the 

transfer speed over the bus, while the Frame Size attribute defines the size of the message 

frame transmitted over the bus in bytes. The Medium attribute specifies the communication 

protocol (type) of the bus, such as CAN, or Flex Ray, or other. The NM attribute is used by 

the code-generator to decide if network management code should be generated for the bus. 

▪ A Channel<<FCO>> is an abstract class, concretized as IChat<<Atom>>, Chan<<Atom>>, 

and Buchan<<Set>>. IChat-s represent sensor ports, Chan-s represent actuator ports, and 

Buchan-s represent bus connection ports. Channel-s are contained in ECU-s to represent the 

physical interface of an ECU. 

▪ A Firmware Module<<Atom>> represents a firmware driver that can be attached to a 

Channel with the Firmware Link<<Connection>>. The Library File attribute of the Firmware 

Module specifies the name of the library in which the driver is contained. If the driver is 

present in source code form, which should be compiled and linked at build time, then the 

Source File attribute should be filled in to indicate the location of the source code. If the 

driver is interrupt-driven, then the ISR attribute specifies the name of the interrupt handler. 

The Event Published attribute specifies any events that are published by the driver, if it uses 

events to notify the components. The ReadAccessor attribute specifies the reader API (‘get’ 

method) provided by the driver, while the WriteAccessor attribute specifies the writer API 

(‘set’ method). 

▪ A Bus Connector<<Connection>> is an association class representing architectural 

connections between Bus, and Buchan-s of ECU-s. BusConnectors-s are contained in 

HardwareSheet models, allowing representation of hardware topologies. 
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▪ COM<<Atom>> and OS<<Atom>> capture OSEK OS and COM attributes. Note that the 

cardinality of containment is set to 0...1, allowing at most one instances of each in an ECU. 

The OS has attributes for Compiler settings, OSEK Conformance class (BCC1, BCC2, 

ECC1, ECC2, AUTO), Schedule (FULL, NON, MIXED, AUTO), Status (STANDARD, 

EXTENDED), and TickTime indicating the size of the RTOS clock tick in micro-seconds 

(this represents the task switching granularity). 

▪ A BusMessage<<Atom>> represents a physical bus message, a basic unit of communication 

transported over a bus. BusMessage-s are associated with specific Buchan-s, and the 

association is represented with the Set membership containment relation. This also explains 

why Buchan-s are stereotyped as Set-s, different from IChat and Chan. The ID attribute of 

the bus message specifies a numerical identifier for the Bus Message. The ID also has a 

priority semantics i.e. attributes with lower ID values are given higher priority over the bus. 

The Size attribute specifies the size of the message in bytes. The CycleTime attribute 

specifies the periodicity of a cyclic message.  

▪ A BusMessageRef<<Reference>> is a reference to a bus message that originates on a remote 

ECU. The relevance of this is clarified while discussing the deployment. 

 
Figure 7: ESMoL Hardware Modeling 

 

4.5. Platform Deployment Modeling 
The previous two sections described the (software) component modeling and the hardware 

modeling sublanguages of ESMoL. This section describes the third ingredient: deployment 

modeling, which captures how software components are deployed on the hardware. The 

deployment models capture the mapping (or allocation) of software components onto the 
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hardware architecture. The ECU model has a “deployment aspect” that allows the designer to 

capture SW component to ECU mapping using GME’s reference concept. In this aspect of the 

ECU models, references (“pointers”) can be placed that indicate that an instance of the 

component is allocated to the specific ECU. Note that deployment models are separate from 

software models, thus allowing the reuse of software models in different HW architectures.  

Furthermore, component ports are connected to ECU ports (sensor, actuators, and bus 

connections) to indicate how the component software interfaces map to actual sensors, actuators 

and buses.  

 
Figure 8: ESMoL Deployment Modeling 

 

Figure 8 shows the Mapping (deployment) modeling portion of the ESMoL meta-model. Note 

that this metamodel describes an aspect of the (previously defined) ECU model and thus it does 

not define a new <<Model>> kind. An elaboration of the figure is as follows: 

▪ A ComponentRef<<Reference>> is a reference to a Component described earlier. 

ComponentRef-s can be contained in ECU-s to indicate the mapping of components to ECU-

s. Furthermore, ComponentRef-s are associated to Task<<Set>>-s with the set membership 

containment relation. Task-s are stereotyped as <<Set>>-s because GME <<Set>>-s are 

container where the contained objects are has the same parent as the container. The 

requirement for same parent container is imminent since we need ComponentRef-s to be 

immediate children of the ECU for them to participate in mapping relations with Bus 

Messages and I/O channels contained in ECU-s, as noted below. Also, note that we could 

have equivalently represented the mapping of Components to Tasks with Connections 

(Association). However, the choice was driven by graphical considerations, since multiple 

Connections running across Tasks and Components increases the visual clutter, whereas Set 
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has a cleaner visualization that does not require introduction of any graphical structures, and 

is visible only in the Set mode visualization in the GME editor. The containment represents 

mapping of a Component to a Task. A Task can contain multiple ComponentRef-s, however 

a ComponentRef must be contained in exactly one Task as a set member. This rule is 

enforced with the GME/OCL constraint shown in Figure 9 (Equation box on the right). The 

constraint specifies that the size of the Task<<Set>> must be exactly 1. The constraint is 

checked by GME, and the modeler user will get a constraint violation message if the model 

does not satisfy it.  

▪ Order<<Connection>> is an association class, which represents the ordering of component 

invocations when multiple components are associated with a single task. The ordering 

semantics are such that the source component has a higher order than the destination 

component, when an Order connection is present between components. 

▪ A Task<<Set>> represents an OSEK task. Various OSEK specific attributes configure the 

task. The membership containment of ComponentRef indicates the assignment of a 

Component to a task. 

▪ InCommMapping<<Connection>>, and OutCommMapping<<Connection>>, is an 

association class (CPort to/from CommDst), which represents mapping of component ports 

to hardware channels. Noticeably CPorts are not directly associated to a Buchan, but to a 

BusMessage. Multiple component ports can be multiplexed over a single BusMessage. The 

NumBits, and the StartBit attribute of the mapping connection assigns the location of a 

component port signal within a bus message. A BusMesssage is a first-class entity in the 

underlying bus communication firmware. Once defined in the communication database, the 

firmware allocates memory, and provides methods and macros to access the bus-messages. In 

fact macros are provided that allows access to individual component ports, which are 

multiplexed over a bus message. 
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5. Code Generation 

5.1. Behavior code generation 
As noted earlier, functional design of the components is specified in Simulink/Stateflow models, 

which is represented in the Simulink/Stateflow sublanguage of ESMoL. This stage deals with 

synthesizing implementation from Simulink and Stateflow sublanguage of ESMoL. 

 

5.1.1. Simulink code generation 

The output of the Simulink code generation stage is a C file that contains implementation 

functions for Simulink systems and sub-systems. Again, we follow an approach similar to other 

code generation stages described earlier. We defined a simplified data-model for the output as a 

UML meta-model that we call SLC. The code-generator algorithm traverses the ESMoL data-

network and builds an SLC data-network using UDM generated API-s.  

The “transform” part of the code-generation algorithm involves constructing an SLC data-

network while traversing an ESMoL data-network. The traversal involves the following key 

sequences: 

1. Iterate over all ComponentModels folder, and the contained Component models. 

2. For each Component model, iterate over the contained System reference-s, note that there 

is at most one System reference in a Component model. 

3. For each System reference, navigate to the referred System. This is the top-level System 

for the subsequent steps in the transformation algorithm. Create an SLCFile object in the 

SLC data network 

4. Starting from the top-level System, traverse down the hierarchy and create data-type 

objects (SLScalar or SLStruct) in the output data-network, based on the typing 

information associated with input and output ports of the ESMoL blocks. This step 

creates SLStruct data-types and populates its members for handling signal busses. 

5. In a second pass starting from the top-level System, traverse down the hierarchy and 

create SLComp or SLPrim objects in the output data-network, based on whether the 

traversed ESMoL block is a System or a Primitive or Reference. This step also creates 

SLIn or SLOut in the constructed SLComp or SLPrim object corresponding to input and 

output ports in the ESMoL block. This step performs a topological on the contained 

blocks before traversing further in order to ensure a valid execution order in the generated 

code. For the constructed SLPrim object, this step also constructs SLParam objects 

corresponding to the Parameter objects in the ESMoL network. 

6. A third pass starting from the top-level System, traverses down the hierarchy and 

constructs SLSig objects in the object data-network which associates the SLIn and SLOut 

objects, thus mapping the ESMoL connections. An SLSig object in the SLC data-network 

has a single SLOut object “feeding” it, however there can be multiple SLIn object 

“feeding” from it. 

 



19 

The SLC data-network thus constructed by the code-generator is subsequently printed as 

formatted text in a .C file. Each class (SLComp, SLPrim, SLIn, SLOut, SLSig) in the SLC meta-

model has two Print methods 1) PrintDef, and 2) PrintUse, which correspond to printing the 

declaration code of a variable or a function, and printing the invocation code of a variable or a 

function. Moreover, there are a number of overloaded PrintUse functions for the SLPrim class 

which correspond to different SL block types, for example, PrintUseAbs, PrintUseConstant, 

PrintUseSum, etc. These functions emit the code for the Primitive SL blocks. The print algorithm 

follows a simple “traverse-and-print” strategy. 

 

A remark must be made here regarding the integration of the Simulink and Stateflow code 

generations. In the SL/SF model, an SF block appears as a SL primitive block of S-Function 

type. In our code generator, the transformation algorithm described above determines if an SL 

primitive corresponds to an SF block, in which case the code-generator invokes the Stateflow 

code generator described in the next section. The Stateflow code generator produces code in a C 

file that implements the logic of the state-machine, and also emits code for a top-level function 

that serves as the interface between the Simulink code and Stateflow code. In the print stage of 

the Simulink code generator, there is a PrintUseS-Function method, that simply emits a call to 

the Stateflow generated top-level function. The two code-generators follow a convention 

regarding the name of the top-level function, which is $prefix_main, where the $prefix is an 

argument passed by the Simulink code generation to the Stateflow code generation. 

 

5.1.2. Stateflow code generation 

The Stateflow code generation is similar to the previous code generation stages in following a 

transform and print strategy; however, it is uniquely different from the other stages in the 

implementation of the transformation. The transformation algorithm of the Stateflow code 

generation is developed using a Graph Rewriting technique, implemented in the ‘GReaT’ tool 

developed at ISIS, Vanderbilt University.  

 

The output of the code generator is a C program that implements the logic of the state-machine. 

The generated C code is a stylized subset of C, and we have created a UML meta-model of this 

stylized C, which we call SFC (see Figure 9 below). The key entities in this meta-model and 

what they represent are described below: 

● SFFile – the top-level file object 

● InitFxn – initialization function that must be invoked by the generated Simulink code 

once to initialize the state machine 

● RootFxn – the main interface function that is invoked by the generated Simulink code 

● SFData/SFEvent – the data, event variables within the state-machine that are the interface 

to the Simulink code. These variables form the input and output argument list of the root 

function, note the association between RootFxn and DE, the abstract base class of SFData 

and SFEvent 

● Enter,Exit,Exec – these are the entry, exit, and step function corresponding to each 

compound state in the state-machine. Fxn is the abstract base class representing a 

function. 
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● SFState – these represent the states in the state machine, an enumeration list is printed in 

the generated code. 

● ActiveSubStates – this singleton array variable represents the current list of active sub-

state for each compound state in the state machine. The enumeration value of the 

compound state is used to index into this array to determine the current active sub-state in 

the generated code. 

● Statement – this abstract base class represent code blocks in the generated code. 

Statements are sub-classed into CompoundStatements, and PrimitiveStatements. 

CompoundStatements are code blocks that include other Statements. These are sub-

classed as Switch, Case, If, and Fxn. PrimitiveStatements are FxnCall, Break, Return, 

ArgComp, Activate, IsInactive, UExpr, etc. 

 
Figure 9: Meta-Model of State-Flow C (SFC) 

 

As noted earlier, the transformation in this code generation is implemented as a graph rewriting 

specification. In the rest of this section we describe the transformation by showing screen-

capture of key parts of the transformation specification. It should be noted here that the 

transformation language implemented by the GReaT tool, has a control flow structure in addition 

to the graph rewriting instructions. The details of the graph transformation language are reported 

[2]. 
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Figure 10: Top-Level ESMoL to SFC Transformation Rule 

 

Figure 10 shows the top-level transformation rule. The top-level rule shows the sequencing of 

sub-rules. Note that the purple colored boxes represent compound rules, and the blue and red 

colored port objects within this rule boxes represent passing of objects to and from the rules. The 

ports edpRootState, and sfcRoot in the top-level rule are bound to the top-level state in the 

ESMoL network which is to be transformed, and the root object (a singleton instance of SFFile) 

in the SFC data-network, respectively. There are seven key steps in the transformation, as shown 

by the seven sub-rules in the top level rule. The CreateStates rule creates SFState objects in the 

output data network, whereas the CreateFxns object creates Enter, Exit, and Exec functions. The 

PopulateFxns rule populates these functions. We navigate down into this rule next. 

 
Figure 11: PopulateFxn Rule in the ESMoL to SFC Transformation 

 

Figure 11 shows the PopulateFxn rule. There are three sub-rules in this rule corresponding to the 

population of Enter, Exit, and Exec function. The fourth rule GetSubStates is visualized 

differently from the other rules as it is a proxy to a rule defined elsewhere, and demonstrates the 

ability to reuse rules. Also note the arrows going the GetSubStates rule back to the 

PopulateEnterFxn rule. This represents a form of recursion - GetSubState rule returns the sub-

states of the current state, and the other rules are invoked on the sub-states. 
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Figure 12: PopulateExecFxn Rule in the ESMoL to SFC Transformation 

 

Figure 12 shows the PopulateExecFxn rule. This rule generates code for the Exec function, 

which implements a step in a state-machine. The generated code for the step function must check 

for enabled transitions leading out of this state, and if there is an enabled transition then the 

transition must be taken which requires a call to the exit function of the source state, performing 

the transition actions, and invoking the enter function of the destination state in the simplest case. 

If no transitions are enabled then the action of the state must be performed, and then the step 

function must do a step on the sub-states. The ExecOFGRemote, and the ExecOFGLocal sub-

rules of this rule emit the code for checking for enabled transitions and performing the transition 

step. The ExecOFGRemote rule handles remote transitions (source and destination state have 

different parents), while the ExecOFGLocal rule handles local transitions (source and destination 

state have the same parent). The ExecOFGRemote rule is invoked prior to the ExecOFGLocal 

rule since cross-hierarchy transitions have a higher priority than local transitions. The 

DuringAction is a primitive rule (red-colored box), and we examine it next. 

 
Figure 13: DuringAction Rule in the ESMoL to SFC Transformation 

 

Figure 13 shows the DuringAction rule. This is a graph rewrite rules, which typically consist of a 

LHS which represents a pattern to be matched, and RHS which represents the modification in the 

graph. In this particular rule the pattern is simply an ESMoL State, and a CompoundStatement, 

which are objects passed as input to this rule. The blue-colored class UExpr represents creation 

of a new object instance of the UExpr class. Also, the blue-colored composition arrow represents 

creation of a composition relation between the CompoundStatement object and the created 

UExpr statement. In simple words this rule creates a UExpr object in the output data-network. 

The boxes labeled am_idx, and am_ea contain attribute mapping specifications. These are code 

snippets which are executed by the transformation engine when the pattern is matched. The red-
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circle labeled hasDuringAction is a guard which must be satisfied for the pattern to be matched. 

In this particular case the guard simply checks that the State has a during action. 

There are additional rules in this transformation specification, however, a description of all the 

rules is outside the scope of this report. The GReaT tool, compiles these transformation 

specification into compliable code. The code is compiled and linked with the other code 

generation stages to build the complete code generator. 

 

5.2. Platform code generation 
The platform code generator component synthesizes code artifacts necessary for system 

implementation. These include:  

● OSEK oil-File: For each ECU-node in the network an oil file is generated, that includes a 

listing of all used OSEK objects and their relations (see OSEK specification). 

● OSEK Tasks & Code: All tasks are implemented in one or more C code files. 

● Application Behavior Code: A separate function is generated for each application 

component that implements the behavior of the component. This function is called out 

from within a task frame. 

● Glue Code: The glue code comprises one or more C code/header files that resolve the 

calls to the CAN driver or the firmware in order to provide access to CAN signals or HW 

I/O signals. 

 
Figure 14: Platform Code Generation Artifacts 
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The code generator uses a “traverse-transform-print” strategy in order to gather information from 

the design models, build intermediate data structures (e.g. tables) as necessary, and then output 

the resulting code (see Figure 14). There are four stages in the code generator each of which 

involves a multi-pass traversal of the model database. These stages are described in details 

below. 

 

5.2.1. Communication Database (DBC) Generation 

This stage generates a communication database file that is used for configuring the CAN bus 

firmware. A DBC file contains specification of bus messages, mapping of signals on to bus 

messages, and additional CAN bus firmware configuration attributes. We have developed a 

UML class diagram of the DBC file that describes the “abstract syntax” of a DBC file. The code-

generator algorithm traverses the network of ESMoL model objects, and builds a corresponding 

DBC model in terms of objects corresponding to the DBC class diagram. The UDM (Unified 

Data Model) tool has been used in the implementation. UDM can automatically generate C++ 

API-s from UML meta-models. Using this generated API, a developer can access and manipulate 

an object network that is conformant with the meta-model, independent of the underlying 

persistence mechanism.  

  

The DBC data-network thus constructed by the code-generator is subsequently printed as 

formatted text in a DBC file. The print algorithm follows a simple “traverse-and-print” strategy. 

Each class in the DBC meta-model has a corresponding Print method, which typically takes the 

form of emitting text for the host class, and then performing a Print method call on its children. 

 

The “transform” part of the code-generation algorithm involves creating a DBC data-network 

while traversing an ESMoL data-network. The traversal follows the following sequence: 

1. At the root level create some a few attributes in the DBC file, and then iterate over all 

HardwareModels folder, and the contained HardwareSheet models. 

2. For each HardwareSheet model, iterate over the contained ECU-s  

3. For each ECU, iterate over each BusMessage, and create a corresponding bus object 

(BO) instance in the DBC data-network. 

4. For each BusMessage, traverse all the COutPort-s associated with the bus message with 

the OutCommMapping connection and determine the startBit, and numBits of the signal 

in the BusMessage. For each of these create an SG object in the DBC data-network. The 

attributes of the SG objects, such as name, CName, numBits, and startBits are filled with 

the corresponding attributes of the CPort. The traversal also determines the ECU where 

the destination component of the specified communication is located, and populates the 

destination attribute of the SG object. 

5. A second traversal over each ECU, traverses to each IChat and Chan objects, and 

generates a physical signal element (EV) in the DBC data-network. 
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6. If the NM attribute of the Bus is enabled, then messages for network management are 

automatically created. 

 

5.2.2. OIL file generation 

This stage generates an OIL file that is used for configuring the OSEK OS. An OIL file contains 

specification of tasks, events, alarms, etc. Similar to before we have developed a UML meta-

model of the OIL file that describes the meta-data of an OIL file. The code-generator algorithm 

traverses the ESMoL data-network and builds a corresponding OIL model using UDM generated 

API-s.  

 

The OIL data-network thus constructed by the code-generator is subsequently printed as 

formatted text in an OIL file. The print algorithm follows a simple “traverse-and-print” strategy. 

Each class in the OIL meta-model has a corresponding Print method, which typically takes the 

form of emitting text for the host class, and then performing a Print method call on its children. 

The “transform” part of the code-generation algorithm involves creating an OIL data-network 

while traversing an ESMoL data-network. The traversal involves the following key sequences: 

1. Iterate over all HardwareModels folder, and the contained HardwareSheet models. 

2. For each HardwareSheet model, iterate over the contained ECU-s  

3. For each ECU, create an OIL data-network 

4. For each OS object (at most one) in the ECU create a corresponding OS object in the OIL 

data-network, and propagate the attributes. Similarly, for each COM object in the ECU.  

5. For each Task in an ECU, create a TASK object in the OIL data-network. Assign the 

attributes of the Task object, such as cycle time, scheduling, and the Task procedure in 

the event that the task is an event-driven task. If a task is cyclic then an alarm that is set 

to trigger every cycle, and an event that is published when the alarm triggers are created 

in the OIL data network. 

6. If a COM object is present in the ECU, and its GenerateTask attribute is set to true, then a 

Communication Task is created in the OIL Data-network. This task is bound with Alarm-

triggered Events that are associated with Network Management messages, CCL, Receive 

and Transmit. 

 

5.2.3. Signal Definition generation 

This stage generates signal definition files. A signal definition file is a C-header file (sigdefs.h) 

that contains macros to access physical signals i.e. bus signals, and sensors and actuators signals. 

The macros hide the firmware details thereby facilitating development of portable component 

code. The code-generator algorithm traverses the ESMoL data-network using UDM generated 

API, and prints a signal definition file for each ECU.  

The traversal involves the following key sequences: 

1. Iterate over all HardwareModels folder, and the contained HardwareSheet models. 

2. For each HardwareSheet model, iterate over the contained ECU-s  

3. For each ECU, create a signal definition file 
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4. For each component reference contained in the ECU, traverse to the referenced 

component 

5. For each CInPort of the Component, determine the associated physical channel connected 

with the InPortMapping connection. Generate a macro definition in the signal definition 

file, the signature of which is patterned as “get_$CName()”, where $CName refers to the 

CName attribute of the CInPort. If the CInPort is associated with a BusMessage, then this 

macro is defined to a “dbk$CName” call, whereas if the CInPort is associated with a 

IChat, then the macro is defined to as ‘simGet(“$CName”)’. 

6. For each COutPort of the Component, similarly navigate to the associate physical 

channel with the OutPortMapping connection. This is similar to above except that the 

generated macro is a “put” macro and takes a value as an argument 

5.2.4. Task Procedure generation 

This stage generates task procedure code in C-source file which are named as 

$TaskName_proc.c. A signal definition file contains macros to access physical signals i.e. bus 

signals, and sensors and actuators signals. The traversal sequence for this stage is defined below: 

1. Iterate over all HardwareModels folder, and the contained HardwareSheet models. 

2. For each HardwareSheet model, iterate over the contained ECU-s  

3. For each ECU, iterate over the contained Task-s 

4. For each Task, create a $Task_proc.c file, and generate a void function definition code. 

The signature of this function is “void $Task_proc(void)”, where $Task refers to the 

name of the task.  

5. For each component reference that is a member of the Task set, traverse to the referred 

Component 

6. For each CInPort and COutPort emit a declaration of a local variable. The data-type of 

this variable is determined using the attributes of the CPort while the name of the local 

variable is the same as the name of the port. 

7. For each CInPort, emit code to perform a get operation, using the macros defined earlier 

to read the value of the variable. Also emit the code to perform an offset and scaling 

operation on the values that are read. 

8. If there is a reference to a Simulink subsystem, then invoke the Simulink code generator, 

and emit code to call the generated function for the Simulink subsystem. This requires 

iterating over the InputPort-s of Simulink subsystem, determining the associated 

Component ports, and passing the local variable corresponding to those ports in the 

emitted function call. Subsequently there is also a need to iterate over OutputPort-s, to 

pass the output parameters. 

9. For each COutPort, emit code to perform a put operation, using macros defined earlier to 

write the value of the corresponding local variable to the physical channels. The 

necessary inverse offset and scaling code is also emitted. The value of the variable is 

computed by the code generated for the Simulink subsystem 
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6. Scheduling 

The Cyber Design toolchain relies on constraint-based schedule solver for computing a periodic 

time triggered schedule. This section describes the code generator that creates the input for the 

scheduler. 

6.1. TT Schedule Generation 
The time-triggered schedule generator uses the scheduling information inside an ESMoL model 

to generate a time-triggered schedule. In the first step, the generator traverses the ESMoL model 

and obtains the relevant scheduling attributes from the software components. Then, the generator 

uses this information to formulate a constraint satisfaction problem. This constraint satisfaction 

problem is then given to a solver, and if a solution is found, the generator translates the solution 

into a valid time-triggered schedule for the components in the model. 

Figure 15 below shows how scheduling information is assigned to components in an ESMoL 

model, and Figure 16 shows the scheduling attributes of the TTExecInfo1 object. 

 

Figure 15: Assigning Scheduling Information to Components 

 

 

Figure 16: The Time-Triggered Scheduling Attributes of the TTExecInfo1 Object in Figure 15 
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7. Interface to Physical Dynamics 

The interface to physical dynamics requires integrating the Cyber generated code with the 

physical dynamics specified in Modelica models. The Dynamics Test Bench and tools generate 

the Modelica models for the entire system as well as for the Test Bench. In the generated 

Modelica models, the Cyber components manifest as a Modelica model with an appropriate 

causal interface i.e. input and output signals. This Modelica model is essentially a wrapper that 

invokes the generated Cyber code based on a defined sampling period. Modelica language allows 

invocation of triggered function using a when construct. The example below illustrates the 

generated Modelica wrapper and invocation of a cyber-generated Shift controller code (see 

Figure 17). 

 

Figure 17: Modelica Wrapper Code generated for Cyber Controller 

model ShiftController_type 
 
ShiftController_wrapper tcontext = 
ShiftController_wrapper(sample_period, min_shift_timer_std, 
min_shift_timer_extd, low_gear, top_gear); 
 
public  

C2M2L_Ext.Interfaces.Context_Interfaces.Driver.Driver_Bus 
Driver_Bus; 

C2M2L_Ext.C2M2L_Component_Building_Blocks.Drive_Line.Torque_Conver
ters.Common_Controls.Torque_Converter_Control_Bus 
Torque_Converter_Control_Bus; 

C2M2L_Ext.C2M2L_Component_Building_Blocks.Drive_Line.Range_Packs.C
ommon_Controls.Range_Pack_Control_Bus Range_Pack_Control_Bus; 
 

parameter Real sample_period; 
     parameter Real min_shift_timer_std; 
     parameter Real min_shift_timer_extd; 
     parameter Real low_gear; 
     parameter Real top_gear; 
 

output Boolean sampleTrigger; 
 
equation  
   sampleTrigger = sample( 0, sample_period); 
   when sampleTrigger then 
    Range_Pack_Control_Bus.gear_selected =   

ShiftController_wrapper_main( 
tcontext,Driver_Bus.gear,Torque_Converter_Control_Bus.input
_speed_torque_converter,Torque_Converter_Control_Bus.output
_speed_torque_converter,Range_Pack_Control_Bus.shift_reques
ted,Driver_Bus.gear); 

end when; 
 

end ShiftController_type; 
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The wrapper object is instantiated with a call to Shift_Controller_wrapper class constructor. This 

initializes the data structures of the cyber generated code, and stores the data structures in the 

tcontext variable in Modelica model. The Boolean variable sampleTrigger is set by using the 

Modelica built-in sample function, which returns a true when the simulation time matches with 

the sample period. This Boolean variable is used as a trigger to invoke the main function of the 

ShiftController wrapper. The main function is the top level step function of the behavioral code 

which executes one step of the controller behavior and computes the value of the output signal 

given the current state of the controller behavior (as stored in tcontext), and the value of the input 

signals. 

 

A simulation of this integrated Modelica model produces a hybrid cosimulation of the physical 

model as well as the Cyber controller. It should be noted that this cosimulation assumes an 

idealized (or synchronous) implementation of the controller, i.e., the step function takes zero 

time to execute. A non-ideal implementation would take a finite non-zero time to execute, and in 

case of a real-time constraint violation (i.e., when execution of the current step does not finish 

within the sample period)  causing instability in the controller behavior. The simulation of the 

performance of the controller in presence of timing constraints is referred to as True Time 

analysis, and is facilitated by a different simulation in the Cyber toolchain.  
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8. Examples 

This section will provide a small case-study of using the Cyber Design Evaluation capability of 

the OpenMETA tools. The example illustrated is the Drive Line model that is analogous to the 

FANG vehicle architecture. In this driveline mode the shift controller that is responsible for 

changing the gear of the vehicle automatically based on the speed of the vehicle and torque 

demand is implemented as a Cyber controller using a Stateflow model. The description below 

presents the Cyber component model, shows its integration in the CyPhy System model, shows 

the Cyber platform model on which the controller will be deployed, and then illustrates 

generated artifacts as well as results from a Hybrid dynamics cosimulation, and finally illustrates 

artifacts generated for the platform software implementation.  

8.1. Cyber Component Model 

 
Figure 18 : Stateflow Model  of Shift Controller 

 

Figure 18 shows a Stateflow model of the shift controller. The controller has multiple states 

corresponding to the current gear of the vehicle, as well as the intermediate torque converter lock 

out states when the controller initiates a gear shift. The inputs to the controller are shift requests, 

and output from the controller is the gear selected. We refrain from discussing the details of the 

control algorithm as it is outside the scope of this report. 
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Figure 19: CyPhy Model of the Shift Controller Component 

Figure 19 shows the Stateflow controller imported in CyPhy as an AVM component. The 

controller model is shown as an embedded Domain model in a CyPhy component wrapper, with 

the appropriate signal and parameter interface mapped into the Domain model. After this 

wrapping this Cyber component can be used as any other component in a CyPhy system design 

model. 

  

8.2. System Model 

 
Figure 20: Torque Control Unit Subsystem in Drivetrain Model 

 

In the System model the Shift Controller component is included as part of a Torque Control Unit 

(TCU) subsystem. Figure 20 depicts a view of the TCU assembly that shows the ShiftController 

as well as a TorqueConverter component.  
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Figure 21: Subset of the Drivetrain Assembly Model 

 

The TCU assembly (labeled as TCU_Cyber in Figure 21) is wired into the rest of the driveline 

model. The details of the driveline model are outside the scope of this chapter.  

8.3. Cyber Platform Model 
The Cyber platform model consists of a mapping of the Shift controller component to a 

computing platform. 

 
Figure 22: Platform Model for Cyber controllers of the Drivetrain System 
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Figure 22 shows a simple platform mode, with two processor nodes connected by CAN Bus. The 

Nodes and the CAN Bus is characterized with respect to its performance and capacity. 

 
Figure 23: Mapping and Deployment Model of the Shift Controller Drivetrain System Controller Platform 

 

Figure 23 shows mapping of the ShiftController component on processing Node1 (with a dashed 

arrow), while the solid arrows indicate the mapping of component interface (data objects) onto 

bus messages (represented with BChan port). 

 
Figure 24: Execution view of the Shift Controller with Task and Timing Association 

Figure 24 shows an execution view of the platform model that associates components with 

schedule objects. These schedule objects are populated after an execution of the scheduling tool. 
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8.4. Dynamics Evaluation 
The dynamics evaluation is specified with a Dynamics Test Bench; a full speed on flat terrain 

Test Bench is illustrated in Figure 25.  

 

 
Figure 25: Dynamics Test Bench for Full Speed Test 

 

The Modelica composer generates the Modelica model as shown in Figure 26: 
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Figure 26: Modelica Model generated from Dynamics Test Bench for Full Speed Test 

The generated Modelica wrapper model was illustrated in Error! Reference source not found. 

 
Figure 27: Generated Cyber Behavioral and Wrapper code  
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Figure 27 shows the generated Cyber code that shows the core Stateflow behavioral code, 

Simulink behavioral code, and wrapper code. Compiler make and project files are also generated 

that renders it easy for the generated code to be compiled and linked into Modelica models. 

 

 
Figure 28: Simulation Results for Full Speed Test showing gear selected, engine RPM and transmission RPM 

 

The results of the dynamics evaluation are shown in Figure 28, which shows the selected gear 

over time, as well as the engine RPM and transmission output RPM over time.  

 

8.5. Platform Software Synthesis  
The platform software includes the behavior code files depicted above as well as component and 

platform code files.  
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Figure 29: Generated Platform Code – OIL Files  

 

Figure 29 depicts the OIL files for the two processor nodes. The OIL file shows the 

configuration of the ShiftController component task, its properties including scheduling priority, 

triggering event, and main procedure. The OSEK compiler instantiates the task based on this 

specification. 

 

9. Future Work 

The Cyber tools are comprehensive in terms of functionality: they can generate platform 

code, schedule analysis, behavioral code, and target hybrid systems verification. However, some 

of the limitations relate to the workflow as it spans multiple tools with their own methodology.  

A controller is typically designed once a plant model is available (or created in Simulink), 

however, in OpenMETA we rely on concurrent development of controller model while we 

design, explore and evolve the plant model. Facilitating this co-evolution of plant with controller 

will require an iterative flow between Simulink and OpenMETA. Such a flow can be enabled by 

use of FMU (or Simulink S-function) that can capture the plant behavior and make it available in 

Simulink to facilitate refinement of controller design. We already support import of Simulink 

models in OpenMETA.  

The platform modeling capability of the Cyber toolchain is somewhat standalone and loosely 

integrated with OpenMETA requiring manual efforts to map the Cyber models into a standalone 

platform model. Ideally, OpenMETA should capture platform models as they are physical 
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components and constitute electrical and thermal loads that must be analyzed together with the 

rest of the CPS. In the future we plan to streamline this integration and facilitate a direct mapping 

from OpenMETA into the ESMoL platform modeling tools 

The Cyber platform component models are currently designed towards the OSEK component 

model. There are newer component models that can support a more dynamic deployment as well 

as resilience. In the future we plan to augment the Cyber platform modeling capability with 

additional component models.  
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